Register once, drag and drop ECAD models into your CAD tool and speed up your design.
Click here for more information74AVCH2T45GF
Dual-bit, dual-supply voltage level translator/transceiver; 3?-?state
The 74AVCH2T45 is a dual bit, dual supply transceiver that enables bidirectional level translation. It features two data input-output ports (nA and nB), a direction control input (DIR) and dual supply pins (VCC(A) and VCC(B)). Both VCC(A) and VCC(B) can be supplied at any voltage between 0.8 V and 3.6 V making the device suitable for translating between any of the low voltage nodes (0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V). Pins nA and DIR are referenced to VCC(A) and pins nB are referenced to VCC(B). A HIGH on DIR allows transmission from nA to nB and a LOW on DIR allows transmission from nB to nA.
The device is fully specified for partial power-down applications using IOFF. The IOFF circuitry disables the output, preventing any damaging backflow current through the device when it is powered down. In suspend mode when either VCC(A) or VCC(B) are at GND level, both A and B are in the high-impedance OFF-state.
The 74AVCH2T45 has active bus hold circuitry which is provided to hold unused or floating data inputs at a valid logic level. This feature eliminates the need for external pull-up or pull-down resistors.
Alternatives
Features and benefits
Wide supply voltage range: 0.8 V to 3.6 V for VCC(A) and VCC(B)
High noise immunity
Suspend mode
Bus hold on data inputs
Inputs accept voltages up to 3.6 V
Low noise overshoot and undershoot < 10 % of VCC
IOFF circuitry provides partial Power-down mode operation
Maximum data rates:
500 Mbps (1.8 V to 3.3 V translation)
320 Mbps (< 1.8 V to 3.3 V translation)
320 Mbps (translate to 2.5 V or 1.8 V)
280 Mbps (translate to 1.5 V)
240 Mbps (translate to 1.2 V)
Latch-up performance exceeds 100 mA per JESD 78 Class II
Complies with JEDEC standards:
JESD8-12 (0.8 V to 1.3 V)
JESD8-11 (0.9 V to 1.65 V)
JESD8-7 (1.2 V to 1.95 V)
JESD8-5 (1.8 V to 2.7 V)
JESD8-B (2.7 V to 3.6 V)
ESD protection:
HBM: ANSI/ESDA/JEDEC JS-001 class 3B exceeds 8000 V
CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
Multiple package options
Specified from -40 °C to +85 °C and -40 °C to +125 °C
參數(shù)類型
型號(hào) | Package name |
---|---|
74AVCH2T45GF | XSON8 |
PCB Symbol, Footprint and 3D Model
Model Name | 描述 |
---|---|
|
封裝
下表中的所有產(chǎn)品型號(hào)均已停產(chǎn) 。
型號(hào) | 可訂購(gòu)的器件編號(hào),(訂購(gòu)碼(12NC)) | 狀態(tài) | 標(biāo)示 | 封裝 | 外形圖 | 回流焊/波峰焊 | 包裝 |
---|---|---|---|---|---|---|---|
74AVCH2T45GF | 74AVCH2T45GF,115 (935291498115) |
Withdrawn / End-of-life | K5 |
XSON8 (SOT1089) |
SOT1089 |
REFLOW_BG-BD-1
|
SOT1089_115 |
Series
文檔 (11)
文件名稱 | 標(biāo)題 | 類型 | 日期 |
---|---|---|---|
74AVCH2T45 | Dual-bit, dual-supply voltage level translator/transceiver; 3?-?state | Data sheet | 2024-08-12 |
AN90007 | Pin FMEA for AVC family | Application note | 2018-11-30 |
Nexperia_document_guide_Logic_translators | Nexperia Logic Translators | Brochure | 2021-04-12 |
Nexperia_document_guide_MiniLogic_MicroPak_201808 | MicroPak leadless logic portfolio guide | Brochure | 2018-09-03 |
SOT1089 | 3D model for products with SOT1089 package | Design support | 2019-10-07 |
avch2t45 | 74AVCH2T45 Ibis model | IBIS model | 2014-10-14 |
Nexperia_package_poster | Nexperia package poster | Leaflet | 2020-05-15 |
XSON8_SOT1089_mk | plastic, extremely thin small outline package; no leads; 8 terminals; 0.55 mm pitch; 1.35 mm x 1 mm x 0.5 mm body | Marcom graphics | 2017-01-28 |
SOT1089 | plastic, leadless extremely thin small outline package; 8 terminals; 0.35 mm pitch; 1.35 mm x 1 mm x 0.5 mm body | Package information | 2022-06-03 |
REFLOW_BG-BD-1 | Reflow soldering profile | Reflow soldering | 2021-04-06 |
MAR_SOT1089 | MAR_SOT1089 Topmark | Top marking | 2013-06-03 |
支持
如果您需要設(shè)計(jì)/技術(shù)支持,請(qǐng)告知我們并填寫(xiě) 應(yīng)答表 我們會(huì)盡快回復(fù)您。
PCB Symbol, Footprint and 3D Model
Model Name | 描述 |
---|---|
|
How does it work?
The interactive datasheets are based on the Nexperia MOSFET precision electrothermal models. With our interactive datasheets you can simply specify your own conditions interactively. Start by changing the values of the conditions. You can do this by using the sliders in the condition fields. By dragging the sliders you will see how the MOSFET will perform at the new conditions set.