粉嫩高清一区二区三区精品视频,自拍色院,富婆一区二区三区,亚洲av动漫在线观看

雙極性晶體管

二極管

ESD保護、TVS、濾波和信號調(diào)節(jié)ESD保護

MOSFET

氮化鎵場效應晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應用認證產(chǎn)品(AEC-Q100/Q101)

74HC191DB

Presettable synchronous 4-bit binary up/down counter

The 74HC191 is an asynchronously presettable 4-bit binary up/down counter. It contains four master/slave flip-flops with internal gating and steering logic to provide asynchronous preset and synchronous count-up and count-down operation. Asynchronous parallel load capability permits the counter to be preset to any desired value. Information present on the parallel data inputs (D0 to D3) is loaded into the counter and appears on the outputs when the parallel load (PL) input is LOW. This operation overrides the counting function. Counting is inhibited by a HIGH level on the count enable (CE) input. When CE is LOW internal state changes are initiated synchronously by the LOW-to-HIGH transition of the clock input. The up/down (U/D) input signal determines the direction of counting as indicated in the function table. The CE input may go LOW when the clock is in either state, however, the LOW-to-HIGH CE transition must occur only when the clock is HIGH. Also, the U/D input should be changed only when either CE or CP is HIGH. Overflow/underflow indications are provided by two types of outputs, the terminal count (TC) and ripple clock (RC). The TC output is normally LOW and goes HIGH when a circuit reaches zero in the count-down mode or reaches '15' in the count-up-mode. The TC output will remain HIGH until a state change occurs, either by counting or presetting, or until U/D is changed. Do not use the TC output as a clock signal because it is subject to decoding spikes. The TC signal is used internally to enable the RC output. When TC is HIGH and CE is LOW, the RC output follows the clock pulse (CP). This feature simplifies the design of multistage counters as shown in Figure 1 and Figure 2. In Figure 1, each RC output is used as the clock input to the next higher stage. It is only necessary to inhibit the first stage to prevent counting in all stages, since a HIGH on CE inhibits the RC output pulse. The timing skew between state changes in the first and last stages is represented by the cumulative delay of the clock as it ripples through the preceding stages. This can be a disadvantage of this configuration in some applications. Figure 2 shows a method of causing state changes to occur simultaneously in all stages. The RC outputs propagate the carry/borrow signals in ripple fashion and all clock inputs are driven in parallel. In this configuration the duration of the clock LOW state must be long enough to allow the negative-going edge of the carry/borrow signal to ripple through to the last stage before the clock goes HIGH. Since the RC output of any package goes HIGH shortly after its CP input goes HIGH there is no such restriction on the HIGH-state duration of the clock. In Figure 3, the configuration shown avoids ripple delays and their associated restrictions. Combining the TC signals from all the preceding stages forms the CE input for a given stage. An enable must be included in each carry gate in order to inhibit counting. The TC output of a given stage it not affected by its own CE signal therefore the simple inhibit scheme of Figure 1 and Figure 2 does not apply. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of VCC.

此產(chǎn)品已停產(chǎn)

Features and benefits

  • Wide supply voltage range from 2.0 to 6.0 V

  • CMOS low power dissipation

  • High noise immunity

  • Latch-up performance exceeds 100 mA per JESD 78 Class II Level B

  • CMOS input levels

  • Synchronous reversible counting

  • Asynchronous parallel load

  • Count enable control for synchronous expansion

  • Single up/down control input

  • Complies with JEDEC standards:

    • JESD8C (2.7 V to 3.6 V)

    • JESD7A (2.0 V to 6.0 V)

  • ESD protection:

    • HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V

    • CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V

  • Specified from -40 °C to +85 °C and -40 °C to +125 °C

封裝

下表中的所有產(chǎn)品型號均已停產(chǎn) 。

型號 可訂購的器件編號,(訂購碼(12NC)) 狀態(tài) 標示 封裝 外形圖 回流焊/波峰焊 包裝
74HC191DB 74HC191DB,112
(935188600112)
Obsolete no package information

環(huán)境信息

下表中的所有產(chǎn)品型號均已停產(chǎn) 。

型號 可訂購的器件編號 化學成分 RoHS RHF指示符
74HC191DB 74HC191DB,112 74HC191DB rohs rhf rhf
品質(zhì)及可靠性免責聲明

文檔 (3)

文件名稱 標題 類型 日期
74HC191 Presettable synchronous 4-bit binary up/down counter Data sheet 2024-03-14
AN11044 Pin FMEA 74HC/74HCT family Application note 2019-01-09
HCT_USER_GUIDE HC/T User Guide User manual 1997-10-31

支持

如果您需要設計/技術(shù)支持,請告知我們并填寫 應答表 我們會盡快回復您。

模型

No documents available

How does it work?

The interactive datasheets are based on the Nexperia MOSFET precision electrothermal models. With our interactive datasheets you can simply specify your own conditions interactively. Start by changing the values of the conditions. You can do this by using the sliders in the condition fields. By dragging the sliders you will see how the MOSFET will perform at the new conditions set.

国产精品日韩精品| 九九热视频精品| 又湿又紧又大又爽a视频国产| 黑大巨大一区二区三区| 精品不卡一区二区| 超碰人妻97| 无码人妻无码| 高清成人综合| 日本不卡在线视频| www.激情网站| 国产午夜麻豆影院在线观看| 人妻无码专区视频| 国产人产一区二区三区红桃影视| 无码中文字幕在线观看| gogo无码一区二区三区| 久久久久免费精品国产| 日韩久色| 欧美日韩国产黄片| 国产中年熟女高潮大集合| 先锋影音资源男人| 久久精品国产亚洲av网站| 国产精品伦一区二区三级视频| 亚洲精品国产成人片在线| 欧美黑人巨大精品一区二区| 婷婷久久伊人四天| 激情人妻网站| 免费69国产精品成人无码视频| x8x8免费人成视频在线观看| 亚洲亚中文久久精品无码丁香| 精品成人无码久久久久久| 青楼妓女禁脔道具调教sm| 国产精品扒开腿做爽爽爽视频| 色噜噜狠狠色综无码| 成人看黄3D动漫免费观看| 国产乱老熟视频乱老熟女51| avtt一区二区| 欧美视频在线一区二区三区 | 亚洲欧美精品久久久| 精品日韩在线| 国产中文区二暮区2023| 精品一区二区三区免费观看|